Advanced Virtual Private LAN Service

Introduction
Globalization, business process optimization, and the need for continuous computing operations motivate businesses to seek solutions that can both distribute and unite data centers over geographically dispersed locations. Geographically distributed data centers are desired for mutual backup to reduce interruption from a local disaster and also to facilitate data center maintenance. Ideally, computing operations can switch transparently between sites, maintaining user sessions, application availability, and access to data resources. Virtual machine technology is increasingly used for distributed data center operations.

Additionally, certain applications increasingly require the extension of VLANs and subnets across Layer 3 and Multiprotocol Label Switching (MPLS) networks between or within data centers and campus networks.

In this challenging environment, a solution that enables fast, reliable, high-capacity, and highly scalable data center interconnection is essential. Such a solution is available with virtual private LAN service (VPLS), a technology that provides Ethernet connectivity over packet-switched WANs. VPLS supports the connection of multiple sites in a single bridged domain over a managed IP or IP and MPLS (IP/MPLS) network. VPLS presents an Ethernet interface, simplifying the LAN and WAN boundary for enterprise customers and helping enable rapid and flexible service provisioning. Data centers, each having their own Ethernet LAN, can be united in a virtual LAN (VLAN) over a WAN by using VPLS.

Advanced VPLS
The Cisco® Layer 2 VPN (L2VPN) Advanced VPLS (A-VPLS) feature introduces the following enhancements to VPLS:

- Capability to load-balance traffic across multiple core interfaces using equal-cost multipathing (ECMP)
- Command-line interface (CLI) enhancements to facilitate configuration of the L2VPN A-VPLS feature
- Support for redundant Cisco Data Center Interconnect (DCI) and provider-edge switches (Figure 1)

![Cisco DCI and A-VPLS Diagram]

Figure 1. Cisco DCI and A-VPLS

- Easy-to-Use CLI for VLAN Extension
- Reduced Complexity
- VSS Single-Chassis Redundancy
- Fast Failover (Less Than 1 Second)
- Layer 2, 3, and 4 Flow-Based Balancing
- Data Center Edge to Aggregation Layer
- Data Center Edge to WAN
- WAN Core

Ethernet LAN Extension over MPLS or IP
- Any Flow, Any Link Load Balancing
- Multipoint Loop-Free Connectivity
Easy Configuration

A-VPLS introduces a new CLI concept called virtual Ethernet. The Layer 2 and VPLS CLI are merged to simplify and provide flexible VLAN configuration. The user no longer needs to configure multiple `xconnect` commands on multiple VLANs, facilitating simplified configuration, management, and troubleshooting (Figures 2 and 3).

Figure 2. VPLS CLI Commands

```
I2 vfi for_10 manual
  vpn id 10
  neighbor 2.2.2.2 encap mpls
  neighbor 3.3.3.3 encap mpls
I2 vfi for_20 manual
  vpn id 20
  neighbor 2.2.2.2 encap mpls
  neighbor 3.3.3.3 encap mpls
Interface vlan 10
  xconnect vfi for_10
Interface vlan 20
  xconnect vfi for_20
```

Figure 3. A-VPLS CLI Commands

```
interface virtual-ethernet 1
  transport vpls mesh
  neighbor 2.2.2.2 pw-class cl1
  neighbor 3.3.3.3 pw-class cl1
  switchport
  switchport mode trunk
  switchport trunk allowed vlan 10, 20
```

Optimal Load Balancing

A-VPLS enables load balancing in different parts of the network:

1. From the Aggregation to the A-VPLS PE
2. For traffic exiting the PE
3. For traffic going into the core network

VSS MEC is used for load balancing from the aggregation to the A-VPLS PE.

To enable load balancing on the edge routers, enter the `load-balance flow` command. The load-balancing rules are configured through the `port-channel load-balance` command parameters.

Flow-aware transport (FAT) pseudowires are used to load-balance traffic in the core when ECMP is used. A-VPLS FAT PW adds another MPLS label to the stack, called the flow label, which contains the flow information of a virtual circuit (Figure 4). For more information about FAT pseudowires, see the PWE3 Internet-Draft *Flow Aware Transport of MPLS Pseudowires* (draft-bryant-filsfils-fat-pw). To enable core load balancing, enter the `flow-label enable` command on both provider-edge routers. You must enter the `load-balance flow` command with the `flow-label enable` command.
Simplified Redundancy

A-VPLS is supported by the Cisco Catalyst® 6500 Virtual Switching System (VSS) 1440. A-VPLS benefits from the multihoming features of VSS and does not require Spanning Tree Protocol for loop prevention. A-VPLS needs to be configured only once (Figure 5).

Figure 5. Catalyst 6500 Virtual Switching System (VSS) 1440

The user needs to configure A-VPLS instances only once on two physical Cisco Catalyst 6500 Series Switches because they have a unified control plane after they have been configured for VSS (Figure 6).
Deployment Scenarios

A-VPLS is supported on Cisco Catalyst 6500 Series Switches with the Shared Port Adapter (SPA) Interface Processor 400 (SIP-400) or ES+40 line card as the outgoing interface. A-VPLS with SIP-400 requires Cisco IOS® Software Release 12.2(33)SX14a or later, and the Ethernet Services Plus 40 (ES+40) line card requires Release 12.2(33)SXJ1 or later. A-VPLS can be deployed in the following layers in the network:

- A-VPLS can be initiated from the core layer.
- Existing aggregation-layer switches can be used to extend the Layer 2 domain with A-VPLS and integrated routing and bridging (IRB) for A-VPLS (refer to the IRB configuration for additional details about IRB).
- Existing aggregation-layer switches can be used to extend the Layer 2 domain with A-VPLS and IRB for A-VPLS. A separate Cisco DCI and services Layer can be created to initiate A-VPLS to extend data center domains.

A-VPLS Core Layer Deployment

A-VPLS instances can be initiated from the core layer; an additional link needs to be connected from the aggregation to the core layer, and this link needs to be configured as a trunk link. Only VLANs that need to be transported across the Layer 3 domain should be allowed; all other VLANs should be disallowed (Figure 7).
A-VPLS Aggregation Layer Deployment

Most networks initiate their Layer 3 boundary from the aggregation layer. With Cisco IOS Software Release 12.2(33)SXJ1 and later, Cisco Catalyst 6500 supports IRB for VPLS, which allows the user to configure an IP address on VLANs associated with virtual forwarding instances (VFIIs; Figure 8).

A-VPLS Deployment in a Separate DCI Layer

A separate layer can be created to extend the Layer 2 domain. This type of setup is useful in mixed-platform networks or large networks with multiple aggregation-layer switches (Figure 9).
Interoperability
A-VPLS can interoperate in an existing VPLS network. The user has to turn off the flow-label feature. This can be achieved by issuing the 'no flow-label enable' CLI. The configuration simplifications and convergence and multi-homing benefits of A-VPLS can still be utilized in a Inter-op network setup.

Supported Hardware
The L2VPN A-VPLS feature supports the following line cards and SPAs:

- Cisco Catalyst 7600 Series SIP-400 (core facing)
- 1 and 10 Gigabit Ethernet SPAs (2X1GE-V1, 2X1GE-V2, and 1X10GE-V2)
- Packet-over-SONET (POS) SPAs (2XOC3, 4XOC3, 1XOC12, and 1XOC48)
- Cisco Catalyst 7600 Series ES+2TG3CXL and ES+4TG3CXL

A-VPLS requires a WAN card on the Cisco Catalyst 6500 Series Switch as an uplink-facing line card (Figure 10).
Figure 10. Always deployed as a Uplink facing Interface

A-VPLS is Supported on SIP400 with GigE, 10GigE and POS SPAs and ES40+ Line Cards on the Cisco Catalyst 6500 Series

SIP-400 and ES+40 support A-VPLS with feature parity, including support for VSS and IRB for VPLS (Figure 11).

Figure 11. A-VPLS and A-VPLS over GRE Requires ES+ with Cisco IOS Software Release 12.2(33)SXJ1 or Later or SIP-400 with Cisco IOS Software Release 12.2(33)SXI4a or Later

<table>
<thead>
<tr>
<th>Common Capabilities</th>
<th>VPLS and VPLSoGRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>32,000 Queues</td>
<td>a-VPLS and a-VPLSoGRE</td>
</tr>
<tr>
<td>3-Level Hierarchical QoS</td>
<td>IRB (Integrated Routing and Bridging)</td>
</tr>
<tr>
<td>Dual Rate, 3-Color Policer</td>
<td>Supported on VSS</td>
</tr>
<tr>
<td>CBWFO, LLQ, and WRED</td>
<td></td>
</tr>
</tbody>
</table>

SIP-400

- Traditional WAN Interfaces
- 4- to 6-Gbps Throughput

ES40+

- 10 GE WAN Interfaces (2 and 4 Ports)
- 40-Gbps Throughput

Configuration

A-VPLS configuration has a new, simplified CLI for configuring VPLS that is easier to troubleshoot and manage.

- The A-VPLS provisioning model is simplified for customers who prefer using the switch-port (switch virtual interface [SVI]) model for Layer 2 configuration.
- The number of configuration CLI commands is reduced through automatic set up of VPLS instances for each VLAN defined in the SVI.
- The new provisioning model helps eliminate the need to:
 - Set up unique VPN IDs
- Set up separate VPLS instances using unique VPN IDs
- Redefine peering provider-edge devices for each VPLS instance in cases in which the sets of peering provider edge devices are the same for different VPLS instances
- Bind pseudowire to VLAN interfaces (with the `xconnect` command on every VLAN interface)

A-VPLS Configuration

Global MPLS and Pseudowire Class Configuration

```
mpls ip
mpls label protocol ldp

pseudowire-class cl1
  encaps mpls
  load-balance flow (Enables load balancing on ECMPs)
  flow-label enable (Enables the imposition and disposition of flow labels for the pseudowire)

port-channel load-balance src-mac
```

MPLS Egress Interface Configuration

```
interface TenGigabitEthernet1/1/3/0
ip address 10.1.1.1 255.255.255.0
mpls ip
```

New Virtual Ethernet Configuration

```
interface virtual-ethernet 1 (Creates a virtual Ethernet interface and enters interface configuration mode)
  transport vpls mesh (Create a full mesh of pseudowires and enters VPLS transport mode)
    neighbor 10.2.2.2 pw-class cl1 (Specifies the PE routers to be used in the pseudowire)
    neighbor 10.3.3.3 pw-class cl1
  switchport
  switchport mode trunk
  switchport trunk allowed vlan 10, 20
```

Integrated Routing and Bridging Configuration

A-VPLS and A-VPLS over GRE with Integrated Routing and Bridging provide the flexibility to use a single device to configure A-VPLS Bridging and regular SVI Routing. This is especially useful for customers who do not wish to extend any VLANs to the Core or WAN layer and terminate all Layer 2 traffic in the aggregation layer itself. This type of configuration also allows for Multi-Tenancy deployments with A-VPLS providing Layer 2 and MPLS VPN (VRF) providing Layer 3 segmentation and virtualization.

```
interface VLAN 10
```
ip vrf forwarding vrf_1
ip address 12.12.12.1 255.255.255.0 (with IRB, user can configure an IP address on an SVI associated with a VPLS PW)

Interface VLAN 20
ip vrf forwarding vrf_2
ip address 12.12.11.1 255.255.255.0
end

A-VPLS over GRE Configuration
A-VPLS over GRE is a key requirement for customers who want to encrypt Layer 2 traffic between 2 or more sites. A-VPLS over GRE is also used for customers who do not wish to move to a MPLS core network or use it as phased migration step towards an MPLS network.

Global MPLS and Pseudowire Class Configuration

mpls ip
mpls label protocol ldp

pseudowire-class cl1
encap mpls
load-balance flow
flow-label enable

port-channel load-balance src-mac

Egress Physical and GRE Tunnel Configuration

int tunnel 1
tunnel mode gre ip
mpls ip (MPLS enabled only on tunnel interface)
tunnel source 10.1.1.1 (Loopback interfaces with /32 addressing is recommended)
tunnel destination 10.2.2.2

int tunnel 2
tunnel mode gre ip
mpls ip
tunnel source 10.1.1.2 (Should use unique source IP for each tunnel to ensure hardware switching for GRE)
tunnel destination 10.3.3.3

interface TenGigabitEthernet1/1/3/0
ip address 10.1.1.1 255.255.255.0

New Virtual Ethernet Configuration
interface virtual-ethernet 1
transport vpls mesh
neighbor 10.2.2.2 pw-class cl1
neighbor 10.3.3.3 pw-class cl1
switchport
 switchport mode trunk
 switchport trunk allowed vlan 10, 20
ip route 10.2.2.2 255.255.255.255 Tunnel1 (Static routes are used to map the remote LDP neighbor through the tunnel interfaces)
ip route 10.2.2.2 255.255.255.255 Tunnel12

Verifying the A-VPLS Pseudowires

A-VPLS is an enhancement to the existing VPLS feature set, and all the show commands and basic troubleshooting processes remain in place for A-VPLS. VCCV is currently not supported for A-VPLS. (Figure 12).

Figure 12. A-VPLS Functionality Verification

Verify A-VPLS Control Plane is setup

<table>
<thead>
<tr>
<th>PE2#sh vfi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Legend: RT=Route-target, S=Split-horizon, Y=Yes, N=No</td>
</tr>
<tr>
<td>VFI name: VFI_10 , state: up, type: multipoint, auto-provisioned</td>
</tr>
<tr>
<td>VPN ID: 10</td>
</tr>
<tr>
<td>Bridge-Domain 10 attachment circuits:</td>
</tr>
<tr>
<td>Vlan10</td>
</tr>
<tr>
<td>Neighbors connected via pseudowires:</td>
</tr>
<tr>
<td>Peer Address</td>
</tr>
<tr>
<td>1.1.1.1</td>
</tr>
<tr>
<td>5.5.5.5</td>
</tr>
</tbody>
</table>

PE2#sh interfaces virtual-ethernet 1 transport
VLAN Transport type for the V-E instance: VPLS Mesh
1 VPLS domains provisioned for this V-E instance

VFI names : VFI[10]
L2VPN A-VPLS Features

Table 1 summarizes the L2VPN A-VPLS features.

Table 1. L2VPN A-VPLS Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Software Release</th>
<th>Description</th>
</tr>
</thead>
</table>
| L2VPN A-VPLS | Cisco IOS Software Release 12.2(33) SXI4 | L2VPN A-VPLS uses VSS and FAT pseudowires to achieve provider-edge redundancy and load balancing. In Cisco IOS Software Release 12.2(33) SXI4, this feature was introduced on the Cisco Catalyst 6500 Series Switches. The following commands were introduced:
 - flow-label enable
 - interface virtual-ethernet
 - load-balance flow
 - neighbor (VPLS transport mode)
 - show interface virtual-ethernet
 - transport vpls mesh
 The following command was modified:
 - show mpls l2transport vc |

Conclusion

The Cisco A-VPLS feature provides simple new commands that deliver powerful traffic flow load-balancing functions in IP and IP/MPLS networks. Load balancing in the network, integrated with Cisco Catalyst 6500 Series Switches, optimizes resource utilization, improving customers’ return on investment (ROI). It also facilitates recovery from service interruptions, increasing the availability of the protected services. A-VPLS benefits service providers and enterprises by optimizing bandwidth utilization in many deployment scenarios, including Cisco DCI applications for enterprises and for service provider-managed services.

For More Information

- Cisco DCI: http://www.cisco.com/go/dci